martes, 1 de noviembre de 2016

Sistema de numeración binario y Ejemplos de ellos!

Sistemas de numeración


Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionares, que se caracterizan porque un símbolo tiene distinto valor según la posición que ocupa en la cifra.



Sistema de numeración decimal:

El sistema de numeración que utilizamos habitualmente es el decimal, que se compone de diez símbolos o dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc.


El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la derecha.


En el sistema decimal el número 528, por ejemplo, significa:

5 centenas + 2 decenas + 8 unidades, es decir:

5*102 + 2*101 + 8*100 o, lo que es lo mismo:

500 + 20 + 8 = 528

En el caso de números con decimales, la situación es análoga aunque, en este caso, algunos exponentes de las potencias serán negativos, concreta­mente el de los dígitos colocados a la derecha del separador decimal. Por ejemplo, el número 8245,97 se calcularía como:

8 millares + 2 centenas + 4 decenas + 5 unidades + 9 décimos + 7 céntimos

8*103 + 2*102 + 4*101 + 5*100 + 9*10-1 + 7*10-2, es decir:

8000 + 200 + 40 + 5 + 0,9 + 0,07 = 8245,97

Sistema de numeración binario.


El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).

En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.

De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:

1*23 + 0*22 + 1*21 + 1*20 , es decir:

8 + 0 + 2 + 1 = 11

No hay comentarios:

Publicar un comentario